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ADHESION OF A FLAT PUNCH ADHERED TO A THIN
PRE-STRESSED MEMBRANE

Kai-Tak Wan
David A. Dillard
Department of Engineering Science and Mechanics,
Virginia Tech, Blacksburg, Virginia, USA

The mechanics of a circular membrane delaminating from a rigid punch is derived
based on linear elasticity and an energy balance approach. Both the tensile pre-
stress and the resulting concomitant stress upon external loading are considered.
A ‘‘pull-off’’ phenomenon is predicted when the contact circle shrinks to a critical
value between 0.1945 and 0.3679 of the film diameter, depending on the critical
strain energy release rate and the prestress. These asymptotic limits match exactly
with the prestress dominant model by Shanahan and prestress free model by Wan.
Thin film delamination from a rectangular punch is also investigated. Unlike the
circular punch, the rectangular contact is expected to reduce to a line contact with
zero contact area at ‘‘pinch-off.’’ The graphs and trends shown are useful in
assessing thin film delamination assisted by a prestress.

Keywords: Adhesion; Membrane; Residual stress; Punch; Delamination

INTRODUCTION

Adhesion of thin membranes on rigid substrates is crucial in many
aspects in electronics,micro electromechanical devices (MEMs), biology,
and other fields. For instance, electronics packages fail when delamin-
ation or ‘‘popcorn’’ occurs, the operation of MEMs is obstructed when
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undesirable surface forces are present, and biological organs formwhen
biocapsules such as cells adhere andaggregate. The presence of a tensile
prestress or residual stress in the film (e.g., due to processing steps and
thermal mismatch) will have a deleterious effect on adhesion.

Voluminous literature is available on techniques for measuring
prestress in a thin flexible film and thin film adhesion on a rigid
substrate. Williams summarized a large number of classical peel tests
and blister tests and computed the strain energy release rates of
prestressed films delaminating from rigid substrates [1]. Recently,
other geometries were reported. For instance, Shanahan formulated
the adhesion of a balloon onto a rigid substrate [2], as well as the
adhesion of a rigid spherical cap to a circular film [3]; White considered
the adhesion between a blistering film and a rigid plate [4]; Wan
investigated the adherence between a thin film and an axisymmetric
flat punch [5, 6] and a rectangular punch [7].

In this paper, we will first focus on the axisymmetric punch
tests. Shanahan [3] considered a thin flexible prestressed membrane
clamped at the perimeter and adhered to a punch with a spherical cap
(Figure 1a). An external pulling force exerted on the punch caused
delamination at the punch-film dissimilar interface. Based on linear
elasticity and an energy balance, an unstable separation of the
adherends was predicted when the contact circle shrank to
1=e� 0.3679 of the film diameter, provided the radius of curvature of
the punch is large compared with the ratio of film radius to thickness.
Recently, Wan [5, 6] independently suggested a slightly different
configuration (Figure 1b). It was a cylindrical punch with a flat end
adhered to the film. The film was assumed free of residual stress, but it
experienced a concomitant membrane stress due to application of
external load and the subsequent change in film profile. Based on a
similar energy balance method, spontaneous separation of the
adherends, or ‘‘pull-off,’’ was expected when the contact circle shrank
to 0.1945 of the film diameter under fixed grip loading. In this paper,
we attempt to construct a generalized thin film delamination
mechanics to include the combined prestress and concomitant mem-
brane stress and to cover wide ranges of the interfacial adhesion
energy and prestress. We will show that the two existing theories are
asymptotic limits of the generalized model.

A model for thin film delamination from a rectangular punch was
constructed earlier and was experimentally verified [7]. Upon external
loading, the rectangular contact of a prestress-free membrane shrinks
to a line contact before complete separation of the adherends. In this
article, a prestress is introduced to check if it has any effect on the
delamination mechanics.
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THEORY

Axisymmetric Flat Punch

We will start with an axisymmetric flat punch. Comparison with
Shanahan’s spherical cap solution will be discussed in the next section.
Figure 1b shows a membrane with an elastic modulus, E, Poisson’s
ratio, n, thickness, h, and radius, a, clamped at the perimeter and in
adhesive contact with a rigid cylindrical punch with a radius, b (�a).
The case where b¼a will first be considered. An external force, F, is
applied quasi-statically to separate the adherends and drive a dela-
mination along the punch-film interface. The contact radius, c,
diminishes from an initial value of a and reaches equilibrium. The
instantaneous membrane stress, N, initially equal to the pre-stress,
N0, is augmented by a concomitant stress, Nm, upon application of
the external load, so that N¼N0þNm. Here the membrane stress
is defined as N¼ s h having units of N�m71, where s is the usual

FIGURE 1 (a) Adherence between a punch with a spherical cap and a thin
circular membrane clamped at the perimeter. In the limit of large radius of
curvature of punch, the spherical cap becomes a flat cylindrical punch. (b)
Adherence between a flat cylindrical punch and a thin circular membrane
clamped at the perimeter. (Continued).
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engineering stress having units of N�m72. The radial and tangential
membrane stresses are assumed to be equal, and an average stress is
acting on the membrane.* Equating the vertical forces requires

F ¼ 2prN sin y � �2prN
dw

dr
ð1Þ

which, after simple integration with respect to r, gives a membrane
profile of

w ¼ F

2pN
log

a

r

� �
ð2Þ

The punch displacement is, therefore, given by

w0 ¼ F

2pN
log

1

z

� �
ð3Þ

FIGURE 1 Continued.

*The exact von Karman equation of a circular plate can only be solved numerically.
The radial and tangential stresses are in fact neither equal in magnitude nor spatially
uniform. In order to derive an approximate analytical solution, equi-biaxial stress is
assumed here. More details can be found in [6].
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with z¼ c=a. Since the elastic strain is given by (sec y� 1Þ � y2=2, the
concomitant stress is shown to be [5, 6]

Nm ¼ E0h

2ða2 � c2Þ

Z a

c

dw

dr

� �2

r dr ð4Þ

where E0¼E=(17 n). Eliminating Nm from Equations (3) and (4), the
constitutive relation without delamination is found to be

F ¼ 4pE0h

ð1� z2Þ log z2 log z2

" #
w3

0 þ
4pN0

logð1=z2Þ

" #
w0 ð5Þ

The first w0
3 term, corresponding to Nmonly, is independent of N0 and

is consistent with our earlier work for N0¼ 0 [5]. The second w0 term
arises due to N0 only. The total energy of the system is
UT¼UPþUSþUE, where UP¼Fw0 is the potential energy due to the
external load, US¼7 (pc2)g is the surface energy with g the critical
strain energy release rate or the adhesion energy, and UE ¼ �

R
Fdw0

is the elastic energy stored in the membrane annulus. Note that UP is
positively defined as it represents the energy input, while the nega-
tively defined US and UE are energy output. The mathematical for-
mulation is consistent with classical linear elastic fracture mechanics
[8]. Thus,

UT ¼ Fw0 � pc2g� 4pE0h

ð1� z2Þ log z2 log z2
w4

0

4

� �
þ 4pN0

logð1=z2Þ
w2

0

2

� �" #
ð6Þ

Note that the prestress is not released during delamination because of
the constraints at the film’s perimeter. A quasi-static equilibrium is
reached when dUT=dðpc2Þ ¼ 0, and Equation (6) leads to the energy
balance:

g ¼ 3ð2� 2z2 � z2 log z2Þ
z2ð1� z2Þ2½logð1=z2Þ�3

E0h

a4

� �( )
w4

0 þ
1

z2½logð1=z2Þ�2
1

a2

� �( )
2N0w

2
0

ð7Þ

The first term is quadric in w0 corresponding to the concomitant
stress, while the second term is quadratic in w0 corresponding to the
prestress. To derive the constitutive relation F(w0) with delamination,
both F and w0 are expressed in terms of g, N0, and z. From Equations
(5) and (7),

o0 ¼ 1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� z2Þ log z2

2� 2z2 � z2 log z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b20ð1� z2Þ �

ffiffiffiffi
D

pqs
ð8Þ
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j ¼ 24

ð1� z2Þðlog z2Þ2

" #
o3

0 �
1

log z2

� �
2b20o0 ð9Þ

where D ¼ b40ð1� z2Þ2 þ G½144z2ð1� z2Þ log z2 þ 72z4ðlog z2Þ2� and

o0 ¼ 1

h

� �
w0

j ¼ 6a2

pE0h4

� �
F

b0 ¼ 12a2

E0h3

� �1=2 ffiffiffiffiffiffi
N0

p
G ¼ 6a4

E0h5

� �
g

By eliminating z from Equations (8) and (9), j(o0) or F(w0) can be
found in an analytical form. To avoid involved mathematics, j(o0) is
cast as a parametric function with a varying z.

Figure 2a shows a family of F(w0) with delamination for a fixed g
and varying N0. For the case of N0¼ 0 (or b0¼ 0), there are two
alternative modes of external loading: fixed load (force-controlled) and
fixed grip (displacement-controlled). The fixed load configuration fol-
lows a trajectory OA. Starting from point O where F¼ 0, the punch
remains in full contact with the membrane until F reaches a threshold
Fth at point A. Further increase beyond F drives a spontaneous dela-
mination through the entire interface separating the adherends. The
fixed grip configuration follows a different trajectory OABCDO. A force
of Fth is needed to initiate delamination at point A. Increase in w0

leads to a stable delamination along ABC and a contraction of the
contact circle, while the external force diminishes to maintain equili-
brium. A ‘‘pull-off ’’ instability occurs at point C when ðdw0=dFÞ ¼ 0 or
ðdF=dw0Þ ! 1, and c*¼ 0.1945a. The asterisk superscript hereafter
denotes ‘‘pull-off ’’. Further increase beyond w0* causes a catastrophic
delamination through the punch-film interface. The branch CDO
satisfies the energy balance but is physically inaccessible. This is
consistent with our earlier work for N0 ¼ 0 [5, 6] and is here extended
to N0> 0. Similar pull-off behavior is predicted for non-zero N0 as
shown in Figure 2a. Figure 2b shows a family of the pull-off radius, c*,
as a function of N0 for various g (or G). Note that (c*=a) is bounded by
a lower limit of 0.1945 and an upper limit of 1=e� 0.3679, with a
transition around g� (2h2=a2) N0. When N0 is small compared with
Nm, c* tends to the lower limit as expected. When N0 is large, the
energy stored in the elastic medium is already large and is augmented
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further by the concomitant stress during loading. Energy balance thus
requires a premature pull-off with a larger c* that approaches the
upper limit. An intermediate N0 involves a competition between N0

and Nm and, thus, c* goes through a transition. Figure 3a shows F(w0)
for a fixed N0 and varying g. The trajectory for fixed grip loading
follows curve OABCDO for ð6a4=E0h5Þg ¼ 1, and ð12a2=E0h3ÞN0 ¼ 1.

FIGURE 2 (a) Constitutive relations for fixed adhesion energy G ¼ ð6a4=
E0h5Þg ¼ 1 and residual stress b20 ¼ ð12a2=E0h3ÞN0 ¼ 0; 1; 2; 3; and 4. Delami-
nation under fixed grip follows the trajectory OABCDO, where points A, B, C,
and D correspond to (c=a)¼ 1.00, 0.70, 0.1945, and 0.12, respectively. Pull-off
occurs at point A in a fixed load configuration and at point C in a fixed grip
configuration. Curve OCD denotes a nonphysical branch of the energy balance
equation. (b) Critical contact radius, c*, at the onset of unstable delamination
as a function of N0 for G ¼ ð6a4=E0h5Þg ¼ 1. (Continued).

Adhesion of a Flat Punch 129

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
1
7
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



All curves exhibit the same ‘‘pull-off ’’ characteristics. Increase in g
pushes w*0 to a larger value since more strain energy is needed to
cause delamination in a strong interface. Figure 3b shows a family of
c* as a function of g for various N0. The ratio (c*=a) is again bounded
by 0.3679 and 0.1945. When N0 dominates in weak interfaces (small g),
c* approaches the upper limit.

The punch radius is hitherto taken to be equal to that of the film
(b¼a). For the case of b< a, initial punch movement is accommodated
by stretching of the annular membrane rather than an intermediate
interfacial delamination. The constitutive relation in Equation (5) is
to be followed until the onset of delamination. As an illustration,
Figure 4a shows the mechanical response for b> c* with b¼ 0.80a,
c*¼ 0.22a, ð6a4=E0h5Þg ¼ 1, and ð12a2=E0h3ÞN0 ¼ 1. Curve OAB

FIGURE 2 Continued.
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denotes the constitutive relation without delamination and is a
monotonic increasing function of w0. Curve O’BCDO represents the
energy balance with OD being the nonphysical branch. Starting from
zero punch displacement at point O, increase in w0 causes the non-
contact annulus to strain while the punch remains in full contact with
the membrane along OAB. Point B represents the onset of delamina-
tion that continues via point C until pull-off at point D. Spontaneous
separation of the punch from the film follows and the load drops to

FIGURE 3 (a) Constitutive relations for fixed residual stress b20 ¼ ð12a2=
E0h3ÞN0 ¼ 1 and adhesion energy G ¼ ð6a4=E0h5Þg ¼ 0:5; 1:0; 1:5, and 2.0.
Delamination follows the trajectory OABCDO, where points A, B, C, and D
correspond to (c=a)¼ 1.00, 0.70, 0.2343, and 0.12, respectively. Pull-off occurs
at point A in a fixed load configuration and at point C in a fixed grip config-
uration. (b) Critical contact radius, c*, at the onset of unstable delamination as
a function of g for b20 ¼ ð12a2=E0h3ÞN0 ¼ 1. (Continued).
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zero at point E. Figure 4b shows two trajectories OAB and ODE for
b� c* with the same g and N0. Curve OAB represents the case where
b¼ c*¼ 0.22a. Here only a gradual straining of the membrane annulus
occurs, but there is no stable delamination. Pull-off occurs at point B,
the intersection of the constitutive equation and the energy balance
curve. The external force drops to zero at point C. Curve ODE repre-
sents the case where b¼ 0.12 a< c*. Again, no stable delamination is
allowed. Pull-off occurs at point E on the nonphysical branch of the
energy balance.

Rectangular Punch

Figure 5 shows a sketch of a rectangular punch adhered to a mem-
brane. The clamps, instead of being a ring, are two infinitely long bars

FIGURE 3 Continued.
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FIGURE 4 Mechanical response for G ¼ ð6a4=E0h5Þg ¼ 1, b20 ¼ ð12a2=E0h3Þ
N0 ¼ 1, and c*¼ 0.22a. (a) For b¼ 0.80a, the trajectory follows the curve
OABCD. (b) For b¼ 0.22a, trajectory follows OAB; for b¼ 0.12a, trajectory
follows ODE.
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holding the two opposite ends of the rectangular film. The film has a
width of 2l and a rectangular contact width of 2c. The external force
per unit breadth is F. The delamination mechanics are formulated in a
similar manner as in the previous subsection and our previous work
[7]. In a 1-D configuration, the stretching membrane stress is in fact
uniform and no approximation is needed as for the axisymmetric
geometry. The membrane profile is linear and is given by

w ¼ F

2N

� �
x ð10Þ

The punch displacement is therefore given by

w0 ¼ Fl

2N

� �
l ð11Þ

with l¼ 17 c=l. The exact concomitant membrane stress is given by

Nm ¼ E0h

2ll

Z l�c

0

dw

dx

� �2

dx ð12Þ

FIGURE 5 Adherence between a flat rectangular punch and a thin rectan-
gular membrane.
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Eliminating Nm from Equations (11) and (12), the constitutive relation
without delamination is derived:

F ¼ E0h

l3l3

� �
w3

0 þ
2N0

ll

� �
w0 ð13Þ

The first cubic term in w0 is independent of N0, consistent with our
earlier work for N0¼ 0 [7], while the second linear term in w0 describes
the effect due to prestress. The total energy of the system is derived
and the energy balance equation becomes

g ¼ 1

l4
3E0h

8l4

� �� 	
w4

0 þ
1

l2
1

4l2

� �� 	
2N0w

2
0 ð14Þ

The first quadric term and second quadratic term in w0 correspond to
the concomitant stress and the prestress, respectively. It can be shown
from Equations (13) and (14) that

o0

l
¼ 1ffiffiffiffiffiffi

18
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b20r þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b20r þ 72Gr

qr
ð15Þ

jr ¼ 6
o0

l

� �3
þ b20r

o0

l

� �
ð16Þ

with

o0 ¼ w0

h

jr ¼
6l3

E0h4

� �
F

b0r ¼
12l2

E0h3

� �1=2 ffiffiffiffiffiffi
N0

p

Gr ¼
6l4

E0h5

� �
g

From Equations (15) and (16), it is obvious that both jr and (o0=l)
are functions of b0r and Gr only. Therefore, once g and N0 are fixed,
both F and (w0=l) are fixed. Figure 6 shows F(w0) for g ¼ E0h5=6l4,
N0¼ 0, and b¼ 0.8l. Curve OA denotes the constitutive relation
without delamination, and curve AB denotes the energy balance. The
path OABC is followed no matter whether the external loading is
applied under fixed load or fixed grip. The initial stage of loading will
traverse along path OA with no delamination until F¼F* at point A.
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If F maintains at this level under fixed load, delamination will con-
tinue in a neutral equilibrium fashion until complete separation of
the adherends at point B. If w0 increases further from point A, a
steady delamination directly proportional to w0 continues until point
B. Note that no abrupt pull-off with a nonzero contact is expected,
but a ‘‘pinch-off ’’ with an ultimate line contact is expected instead.
This is consistent with our previous prediction for N0¼ 0 and is here
extended to cases where N0> 0.

DISCUSSION

The presence of a nonzero ‘‘pull-off ’’ radius in our punch-film model is
remarkable. The classical Johnson-Kendall-Roberts (JKR) theory of
adhesion between rigid solid bodies shows a similar ‘‘pull-off ’’ event at
finite contact radius [9]. The present new method offers an excellent
opportunity for experimentalists measuring thin film adhesion,
especially when the external force is extremely small and difficult to

FIGURE 6 Mechanical response for G ¼ ð6l4=E0h5Þg ¼ 1, b20 ¼ N0 ¼ 0, and
b¼ 0.80l. External loading under either fixed load or fixed grip leads to tra-
jectory OABC.

136 K.-T. Wan and D. A. Dillard

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
1
7
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



monitor. The prestress can be measured by the contact radius at pull-
off, since it is manifested by any positive deviation from the lower
limit of c*¼ 0.1945. To measure the prestress and elastic modulus of
the membrane, the same loading geometry can be adopted provided
that no delamination occurs, and this is known as the shaft loaded
blister test [10, 11]. The adhesion energy can thus be determined by c*
and w0*.

It is interesting to compare the above theory with Shanahan’s
punch model [3] (Figure 1a).§ A spherical cap of radius, r, adheres to a
flexible membrane under a prestress of N0. The concomitant stress is
neglected so that the effective membrane stress remains constant at
N0 upon external load. At equilibrium, the cap apex is at a distance d
from the plane of the nondeformed membrane. The profile of the
noncontact annulus is found to be

w ¼ k log
a

r

� �
ð17Þ

with an implicit proportionality constant k. The constitutive relation is
found to be

d ¼ logð1=z2Þ
4pN0

F � a2

2r

�
1þ a2

4r2

�
ð18Þ

To calculate g, r�c is assumed such that the contact circle is virtually
planar with an area pa2, and the surface energy US becomes 7 (pa2)g.
The other energy terms—UP, UE, and UT—are derived, and the
identical energy balance approach as above is adopted to obtain g:

g ¼ N0d

2c½logða=cÞ�2
d
c
þ c

r
ð1þ 2 logða=cÞÞ

� �
ð19Þ

The delamination mechanics are similar to our model, in that, once the
punch is raised from the film, delamination occurs until instability
sets in. Stability of the configuration is determined by ð@g=@cÞ, where a
negative quantity denotes an unstable equilibrium and catastrophic
delamination growth while a positive quantity leads to a stable quasi-
static equilibrium. It can be easily shown from Equation (19) that
(@g=@cÞ<0 requires (c=a)< (1=e)� 0.3679, such that pull-off occurs
once the circle shrinks to 0.3679 of the film diameter.

§The names given to variables used in this section are different from Shanahan’s
original paper [3], but the mathematical expressions are equivalent.
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In our model of a flat punch, the contact circle is planar rather than
being a spherical cap, yet the delamination mechanics should
approach Shanahan’s model in the limit of r�c and d�w0. Several
remarks are noted as follows:

1. Shanahan foresaw the necessity of including the concomitant
stress, Nm, as discussed in his paper [3] but did not attempt to
compute it explicitly and assumed Nm�N0 and N�N0 through-
out. One consequence of such an assumption is the difficulty in
defining the constant k in Equation (17). Our model explicitly gives
k¼ (F=2pN). Thus, in case of zero residual stress (N�N0¼ 0),
k becomes undefined in Shanahan’s model.

2. Neglecting the concomitant stress, Nm, in Shanahan’s model leads
to significant error, especially when N0 is small and Nm becomes
the dominant membrane stress. The consequences can be seen in
the constitutive relation in Equation (18), the strain energy re-
lease rate in Equation (19), and the pull-off contact radius. The
constitutive relation in Equation (18) reduces to

F ¼ 4pN0

logð1=z2Þ

" #
w0 ð20Þ

in the flat punch limit, which is identical to the linear w0 term in
Equation (5). The ignored w0

3 term in Equation (5) becomes
dominant at small N0. The strain energy release rate in Equation
(19) reduces to

g ¼ 1

z2½logð1=z2Þ�2

( )
2N0w2

0

a2
ð21Þ

in the flat punch limit, which is identical to Equation (7) if the w0
4

term in Equation (7) is ignored. The pull-off contact radius is
predicted by Shanahan to be always (c*=a)¼ 0.3679 in the pre-
sence of any non-zero residual stress. The fact that 0.1945�
(c*=a)� 0.3679 at pull-off as predicted by our model shows that
Shanahan’s model is valid only for large N0.

3. Shanahan suggested that the critical force at pull-off was related
to g, N0, r, and a, even though the exact analytical form was
thought to be too mathematically involved to be computed. We
provide a procedure in the present work to compute the numerical
pull-off force and relate it to other quantities.

4. The present model can easily be modified to accommodate the
spherical cap geometry by replacing all w0 in Equations (5) and (7)
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by dþ c2=2r. Such changes do not lead to any notable consequences
in the delamination mechanics.

Our generalized model, albeit spanning Shanahan’s predominant
prestress limit and Wan’s negligible prestress limit, experiences
similar shortcomings as discussed by Shanahan [3] and Wan [5, 6].
For instance, the viscoelastic behavior of a polymer film, which is
not accounted for, could lead to a zero pull-off contact radius in
practice; the exact von Karman solution that violates the uniform
membrane stress assumption in this paper could lead to some
minor errors in the pull-off parameters; the neglected mode II
fracture, dissipative mechanisms in delamination, and finite range
of intersurface forces could have an effect on the delamination
mechanics.

CONCLUSION

The significance of attractive surface forces between a thin, flexible,
prestressed membrane and a rigid substrate has been demonstrated.
It is shown for a circular membrane delaminating from a rigid
punch that complete separation of the adherends occurs when the
contact circle reduces to a critical nonzero dimension. The critical
ratio of radii of the contact circle to the membrane depends only on
the adhesion energy of the dissimilar interface and the magnitude
of the prestress or residual stress of the membrane, but it is inde-
pendent of the stiffness and thickness of the film. The mechanical
properties and geometry of the film are only manifested by the
critical external load and punch displacement at pull-off. The axi-
symmetric punch test is particularly appealing to the experi-
mentalists when measuring residual stress and adhesion energy,
especially when the external force is too small to be accurately
calibrated.

We have also derived the mechanics of a thin film delaminating
from a rectangular punch. Unlike the axisymmetric geometry, the
1-D configuration requires the contact area to decrease to zero at
complete separation of the adherends. The ultimate line contact is
independent of the prestress and adhesion energy. It is easy to
deduce that for an elliptical punch, as long as the delamination
front complies with a proportional reduction of the planar elliptical
geometry, the pull-off contact area should be finite and lies some-
where between that of the axisymmetric and rectangular counter-
parts.

Adhesion of a Flat Punch 139

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
1
7
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



REFERENCES

[1] Williams, J. G., International J. Fracture, 87, 265�288 (1997).
[2] Shanahan, M. E. R., J. Adhesion, 63, 15�29 (1997).
[3] Shanahan, M. E. R., C.R. Acad. Sci. Paris Ser. IV, 1, 517�522 (2000).
[4] White, S. A., The effect of work of adhesion on contact of a pressurized blister with

a flat surface, M.S. Thesis, Department of Civil and Environmental Engineering,
Virginia Tech, Blacksburg, VA, April (2001).

[5] Wan, K.-T., J. Adhesion, 75, 369�380 (2001).
[6] Wan, K.-T., ASME: J. Appl. Mechanics, 69, 110�116 (2002).
[7] Wan, K.-T. and Duan, J., ASME: J. Appl. Mechanics, 69, 104�109 (2002).
[8] Lawn, B. R., Fracture of Brittle Solids, 2nd ed. (Cambridge University Press, New

York, 1993).
[9] Johnson, K. L., Kendall, K. and Roberts, A. D., Proceedings of Royal Society

of London A, 324, 301�313 (1971).
[10] Wan, K.-T. and Liao, K., Thin Solid Films, 352, 167�172 (1999).
[11] Wan, K.-T., J. Adhesion, 70, 209�219 (1999).

140 K.-T. Wan and D. A. Dillard

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
1
7
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1


